iynorm module
- class DMT.extraction.iynorm.IYNorm(y_values)[source]
Bases:
object
This abstract class defines an interface for different y_values normalization strategies to be used by XStep objects.
- Parameters:
- y_values
np.array
() This array shall contain the y_values to be normalized.
- y_values
Methods
normalize()
Return an array that contains normalized y_values according to different Sub-class implementations.
- abstract normalize(values)[source]
This abstract method must be overwritten by subclasses.
- Parameters:
- values
np.ndarray
() The y-array that shall be normalized.
- values
- Returns:
- values
np.ndarray
() The normalized data.
- values
- class DMT.extraction.iynorm.IYNormDefault(y_values)[source]
Bases:
IYNorm
This subclass normalizes the y_values so that they lie between 0 and 1.
- normalize(values)[source]
This abstract method must be overwritten by subclasses.
- Parameters:
- values
np.ndarray
() The y-array that shall be normalized.
- values
- Returns:
- values
np.ndarray
() The normalized data.
- values
- class DMT.extraction.iynorm.IYNormFactor(y_values)[source]
Bases:
IYNorm
This subclass normalizes the y_values using a constant factor that is multiplied to the data. The factor is equal to the minimum of the init values.
- normalize(values)[source]
This abstract method must be overwritten by subclasses.
- Parameters:
- values
np.ndarray
() The y-array that shall be normalized.
- values
- Returns:
- values
np.ndarray
() The normalized data.
- values
- class DMT.extraction.iynorm.IYNormLog(y_values)[source]
Bases:
IYNorm
This subclass normalizes the y_values using np.log10. If somehow a nan value occurs, it is set to 1e9.
- normalize(values)[source]
This abstract method must be overwritten by subclasses.
- Parameters:
- values
np.ndarray
() The y-array that shall be normalized.
- values
- Returns:
- values
np.ndarray
() The normalized data.
- values
- class DMT.extraction.iynorm.IYNormLogOneRange(y_values)[source]
Bases:
IYNorm
This subclass normalizes the y_values using np.log10(values’), where values’ corresponds to the values normalized between 0 and 1. If somehow a nan value occurs, it is set to 1e9.
- normalize(values)[source]
This abstract method must be overwritten by subclasses.
- Parameters:
- values
np.ndarray
() The y-array that shall be normalized.
- values
- Returns:
- values
np.ndarray
() The normalized data.
- values
- class DMT.extraction.iynorm.IYNormLog_1(y_values)[source]
Bases:
IYNorm
This subclass normalizes the y_values using np.log10(1+values). If somehow a nan value occurs, it is set to 1e9.
- normalize(values)[source]
This abstract method must be overwritten by subclasses.
- Parameters:
- values
np.ndarray
() The y-array that shall be normalized.
- values
- Returns:
- values
np.ndarray
() The normalized data.
- values
- class DMT.extraction.iynorm.IYNormNone(y_values)[source]
Bases:
IYNorm
This subclass performs no normalization at all.
- normalize(values)[source]
This abstract method must be overwritten by subclasses.
- Parameters:
- values
np.ndarray
() The y-array that shall be normalized.
- values
- Returns:
- values
np.ndarray
() The normalized data.
- values